Luminal Cholera Toxin Alters Motility in Isolated Guinea-Pig Jejunum via a Pathway Independent of 5-HT3 Receptors
نویسندگان
چکیده
Cholera toxin (CT) is well established to produce diarrhea by producing hyperactivity of the enteric neural circuits that regulate water and electrolyte secretion. Its effects on intestinal motor patterns are less well understood. We examined the effects of luminal CT on motor activity of guinea-pig jejunum in vitro. Segments of jejunum were cannulated at either end and mounted horizontally. Their contractile activity was video-imaged and the recordings were used to construct spatiotemporal maps of contractile activity with CT (1.25 or 12.5 μg/ml) in the lumen. Both concentrations of CT induced propulsive motor activity in jejunal segments. The effect of 1.25 μg/ml CT was markedly enhanced by co-incubation with granisetron (5-HT(3) antagonist, 1 μM), which prevents the hypersecretion induced by CT. The increased propulsive activity was not accompanied by increased segmentation and occurred very early after exposure to CT in the presence of granisetron. Luminal CT also reduced the pressure threshold for saline distension evoked propulsive reflexes, an effect resistant to granisetron. In contrast, CT prevented the induction of segmenting contractions by luminal decanoic acid, so its effects on propulsive and segmenting contractile activity are distinctly different. Thus, in addition to producing hypersecretion, CT excites propulsive motor activity with an entirely different time course and pharmacology, but inhibits nutrient-induced segmentation. This suggests that CT excites more than one enteric neural circuit and that propulsive and segmenting motor patterns are differentially regulated.
منابع مشابه
Cholera Toxin Induces Sustained Hyperexcitability in Myenteric, but Not Submucosal, AH Neurons in Guinea Pig Jejunum
Background and Aims: Cholera toxin (CT)-induced hypersecretion requires activation of secretomotor pathways in the enteric nervous system (ENS). AH neurons, which have been identified as a population of intrinsic sensory neurons (ISNs), are a source of excitatory input to the secretomotor pathways. We therefore examined effects of CT in the intestinal lumen on myenteric and submucosal AH neuron...
متن کاملGetting a Handle on Cholera and the Circuits Controlling Intestinal Motility
A commentary on Luminal cholera toxin alters motility in isolated guinea-pig jejunum via a pathway independent of 5-HT 3 receptors. Diarrheal diseases, which are typically bacterial in nature, are a major global health problem (Zuckerman et al., 2007). The majority of diarrheal episodes are associated with Escherichia coli, or Shigella, Campylobacter or Samonella spp., however, infection with t...
متن کاملCalcium Sensing Receptors Mediate Local Inhibitory Reflexes Evoked by L-Phenylalanine in Guinea Pig Jejunum
Amino acids applied to the mucosa evoke inhibitory reflexes in guinea-pig jejunum, but the receptors involved in sensory transduction are still unclear. One promising candidate is the extracellular calcium sensing receptor (CaSR), which is expressed by mucosal enteroendocrine cells and is preferentially activated by aromatic L-amino acids. We tested this by applying various amino acids to the m...
متن کاملEffect of cisplatin treatment on the response to serotonin
Although cisplatin is one of the most effective cancer drugs which is widely used in the treatment of various neoplasms, its side effects, especially vomiting may limit its use. It has been demonstrated that cytotoxic drugs lead to a sudden release of serotonin (5-HT). The following study was performed to determine the possible interactions of cisplatin with 5-HT receptors. In this study, the...
متن کاملPropulsion in guinea pig colon induced by 5-hydroxytryptamine (HT) via 5-HT4 and 5-HT3 receptors.
Previous studies have shown that the intestinal peristaltic reflex initiated by mucosal stimulation is mediated by release of 5-hydroxytryptamine (HT) from enterochromaffin cells; 5-HT acts via 5-HT4 receptors in rat and human, and via both 5-HT4 and 5-HT3 receptors in guinea pig to activate intramural sensory neurons that release calcitonin gene-related peptide. In this study, selective agonis...
متن کامل